Header Ads

The best of scientist development by research





In 2009, Adam, a robot scientist developed by researchers at the Universities of Aberystwyth and Cambridge, became the first machine to independently discover new scientific knowledge. The same team has now developed Eve, based at the University of Manchester, whose purpose is to speed up the drug discovery process and make it more economical. In the study published today, they describe how the robot can help identify promising new drug candidates for malaria and neglected tropical diseases such as African sleeping sickness and Chagas’ disease.

“Neglected tropical diseases are a scourge of humanity, infecting hundreds of millions of people, and killing millions of people every year,” says Professor Steve Oliver from the Cambridge Systems Biology Centre and the Department of Biochemistry at the University of Cambridge. “We know what causes these diseases and that we can, in theory, attack the parasites that cause them using small molecule drugs. But the cost and speed of drug discovery and the economic return make them unattractive to the pharmaceutical industry.

“Eve exploits its artificial intelligence to learn from early successes in her screens and select compounds that have a high probability of being active against the chosen drug target. A smart screening system, based on genetically engineered yeast, is used. This allows Eve to exclude compounds that are toxic to cells and select those that block the action of the parasite protein while leaving any equivalent human protein unscathed. This reduces the costs, uncertainty, and time involved in drug screening, and has the potential to improve the lives of millions of people worldwide.”

Eve is designed to automate early-stage drug design. First, she systematically tests each member from a large set of compounds in the standard brute-force way of conventional mass screening. The compounds are screened against assays (tests) designed to be automatically engineered, and can be generated much faster and more cheaply than the bespoke assays that are currently standard. This enables more types of assay to be applied, more efficient use of screening facilities to be made, and thereby increases the probability of a discovery within a given budget.
২009 সালে, অ্যাবাম, এবরিস্টউইথ এবং কেমব্রিজ বিশ্ববিদ্যালয়ে গবেষকগণের দ্বারা উদ্ভাবিত একটি রোবট বিজ্ঞানী স্বাধীনভাবে নতুন বৈজ্ঞানিক জ্ঞান আবিষ্কারের প্রথম যন্ত্র হয়ে ওঠে। একই দলের এখন ম্যান ম্যানচেস্টার বিশ্ববিদ্যালয়ের ভিত্তি করে ইভ গড়ে উঠেছে, যার উদ্দেশ্য হল ড্রাগ আবিষ্কার প্রক্রিয়া দ্রুততর করা এবং এটি আরো বেশি লাভজনক করে তোলে। আজ প্রকাশিত গবেষণায় তারা বর্ণনা করে যে, কীভাবে রোবট ম্যালেরিয়া ও অযৌক্তিক ক্রান্তীয় রোগ যেমন আফ্রিকান ঘুমের রোগ এবং চাগাস রোগের জন্য নতুন ওষুধের প্রার্থীকে চিহ্নিত করতে সাহায্য করতে পারে।

কেমব্রিজ সিস্টেমের জীববিজ্ঞান বিভাগের অধ্যাপক স্টিভ অলিভার এবং কেমব্রিজ বিশ্ববিদ্যালয়ের জীববিজ্ঞান বিভাগের অধ্যাপক স্টিভ অলিভার বলেছেন, "অবহেলিত গ্রীষ্মমন্ডলীয় রোগগুলি মানবতার একটি যন্ত্রণা, লক্ষ লক্ষ লোককে সংক্রামিত করে এবং প্রতিবছর লক্ষ লক্ষ লোককে হত্যা করে"। "আমরা জানি যে এই রোগগুলির কারণ কি এবং আমরা যে তত্ত্বগতভাবে, পরজীবী আক্রমণ করতে পারি যেগুলি তাদের ক্ষুদ্র অণু ওষুধ ব্যবহার করে। কিন্তু ওষুধ আবিষ্কারের খরচ ও গতি এবং অর্থনৈতিক রিটার্ন তাদের ফার্মাসিউটিকাল শিল্পের জন্য অনাকর্ষণীয় করে তোলে।

"ইভ তাঁর কৃত্রিম বুদ্ধিমত্তা ব্যবহার করে তার স্ক্রিনের প্রাথমিক সফলতাগুলি থেকে শিখতে এবং নির্বাচিত যৌগগুলির সাথে সক্রিয় হওয়ার উচ্চ সম্ভাবনা রয়েছে এমন যৌগগুলি নির্বাচন করে। একটি স্মার্ট স্ক্রীনিং সিস্টেম, জেনেটিকালি ইন্জিনিয়ারযুক্ত খামের উপর ভিত্তি করে, ব্যবহৃত হয়। এটি ইভকে কোষগুলির বিষাক্ত যে যৌগগুলি বাদ দেয় এবং সেগুলি নির্বাচন করে যারা প্যারাসাইট প্রোটিনের কাজটি বন্ধ করে দেয় এবং যে কোনও সমতুল্য মানব প্রক্রিয়ায় প্রোটিন নিরাপদ থাকে। এটি খরচ, অনিশ্চয়তা, এবং মাদক স্ক্রীনিংয়ে জড়িত সময় কমিয়ে দেয়, এবং বিশ্বব্যাপী লক্ষ লক্ষ লোকের জীবনে উন্নতির সম্ভাবনা রয়েছে। "

ইভ প্রাথমিক পর্যায়ে মাদক ডিজাইন স্বয়ংক্রিয় করার জন্য ডিজাইন করা হয়েছে প্রথমত, তিনি প্রচলিত ভর স্ক্রীনিংয়ের আদর্শ বর্বর বাহিনীর যৌগগুলির একটি বৃহৎ সেটের প্রতিটি সদস্যের নিয়মিত পরীক্ষা করে। যৌগগুলি স্বয়ংক্রিয়ভাবে প্রকৌশলী করার জন্য পরিকল্পিত অ্যাসেস (পরীক্ষাগুলি) এর বিরুদ্ধে স্ক্রিন করা হয়, এবং বর্তমান মানের যে বিস্ফোক অ্যাসেসের তুলনায় এটি খুব দ্রুত এবং আরো সস্তাভাবে তৈরি হতে পারে এটি প্রয়োগ করার আরো প্রকারের পরিবর্ধন করতে সক্ষম করে, স্ক্রীনিং সুবিধাগুলির আরও দক্ষ ব্যবহার করা এবং সেইভাবে প্রদত্ত বাজেটের মধ্যে একটি আবিষ্কারের সম্ভাবনা বৃদ্ধি করে

Eve’s robotic system is capable of screening over 10,000 compounds per day. However, while simple to automate, mass screening is still relatively slow and wasteful of resources as every compound in the library is tested. It is also unintelligent, as it makes no use of what is learnt during screening.

To improve this process, Eve selects at random a subset of the library to find compounds that pass the first assay; any ‘hits’ are re-tested multiple times to reduce the probability of false positives. Taking this set of confirmed hits, Eve uses statistics and machine learning to predict new structures that might score better against the assays. Although she currently does not have the ability to synthesise such compounds, future versions of the robot could potentially incorporate this feature.

Professor Ross King, from the Manchester Institute of Biotechnology at the University of Manchester, says: “Every industry now benefits from automation and science is no exception. Bringing in machine learning to make this process intelligent – rather than just a ‘brute force’ approach – could greatly speed up scientific progress and potentially reap huge rewards.”

To test the viability of the approach, the researchers developed assays targeting key molecules from parasites responsible for diseases such as malaria, Chagas’ disease and schistosomiasis and tested against these a library of approximately 1,500 clinically approved compounds. Through this, Eve showed that a compound that has previously been investigated as an anti-cancer drug inhibits a key molecule known as DHFR in the malaria parasite. Drugs that inhibit this molecule are currently routinely used to protect against malaria, and are given to over a million children; however, the emergence of strains of parasites resistant to existing drugs means that the search for new drugs is becoming increasingly more urgent.

“Despite extensive efforts, no one has been able to find a new antimalarial that targets DHFR and is able to pass clinical trials,” adds Professor King. “Eve’s discovery could be even more significant than just demonstrating a new approach to drug discovery.”

The research was supported by the Biotechnology & Biological Sciences Research Council and the European Commission.
ইভ এর রোবোটিক্স সিস্টেম দিনে প্রতি 10,000 সংমিশ্রণ উপর স্ক্রিনিং করতে সক্ষম। যাইহোক, স্বয়ংক্রিয়ভাবে সহজ করার জন্য, গণ স্ক্রীনিং এখনও অপেক্ষাকৃত ধীর এবং উপকারী সম্পদ হিসাবে গ্রন্থাগারের প্রতিটি যৌগ পরীক্ষা করা হয়। এটি নিরবচ্ছিন্ন, কারণ এটি স্ক্রীনিংয়ের সময় কী শেখানো হয় তা ব্যবহার করে না।

এই প্রক্রিয়াটি উন্নত করার জন্য, প্রথম সন্ধানে পাস করার জন্য যৌগগুলি খুঁজে পাওয়ার জন্য ইভা র্যান্ডমটিতে একটি উপসেট র্যান্ডম নির্বাচন করে; কোনও 'হিটস' মিথ্যা ধার্মিকতার সম্ভাব্যতা কমাতে বহুবার পুনরায় পরীক্ষা করা হয়। নিশ্চিত হিট এই সেট গ্রহণ, ইভ পরিসংখ্যান এবং মেশিন লার্নিং assays বিরুদ্ধে ভাল স্কোর হতে পারে যে নতুন কাঠামো পূর্বাভাস ব্যবহার করে। যদিও বর্তমানে তিনি এই ধরনের যৌগ সংশ্লেষণ করার ক্ষমতা রাখেন না, তবে রোবটের ভবিষ্যতের সংস্করণগুলি সম্ভবত এই বৈশিষ্ট্যটি অন্তর্ভুক্ত করতে পারে।

ম্যানচেস্টার ইউনিভার্সিটির ম্যানচেস্টর ইনস্টিটিউট অব বায়োটেকনোলজি থেকে অধ্যাপক রস কিং বলেন, "এখনকার প্রতিটি শিল্পই অটোমেশন ও বিজ্ঞান থেকে উপকৃত হয়। এই প্রক্রিয়াটিকে বুদ্ধিমান করার জন্য মেশিন লার্নিংয়ের মধ্যে আনয়ন - শুধু একটি 'প্রাণঘাতী বল' পদ্ধতির পরিবর্তে - বৈজ্ঞানিক অগ্রগতিটি বাড়াতে পারে এবং সম্ভাব্য ব্যাপক পুরস্কারগুলি কাটতে পারে। "

এই পদ্ধতির কার্যকারিতা যাচাই করতে গবেষকরা ম্যালেরিয়া, চাগাস রোগ এবং স্কিস্টোসোমিয়াসিসের মতো রোগীদের জন্য পরজীবী থেকে কী অণুকে লক্ষ্যবস্তু করে আর্মস গঠন করে এবং প্রায় 1,500 চিকিত্সাগতভাবে অনুমোদিত যৌগিকগুলির একটি গ্রন্থাগারের বিরুদ্ধে পরীক্ষা করে। এই মাধ্যমে, ইভ দেখান যে একটি যৌগ যে আগে একটি অ্যান্টি-ক্যান্সার ড্রাগ হিসাবে একটি কী অণু ডায়ালিংএইচএফআর নামে পরিচিত ম্যালেরিয়া প্যারাসাইট মধ্যে বাধা দেয়। ম্যালেরিয়া প্রতিরোধে যে মাদকদ্রব্য বর্তমানে নিয়মিতভাবে ম্যালেরিয়া প্রতিরোধে ব্যবহৃত হয়, এবং এক মিলিয়ন শিশুকে দেওয়া হয়; যাইহোক, বিদ্যমান ওষুধ প্রতিরোধী পরজীবী এর strains উত্থান মানে নতুন ওষুধের জন্য অনুসন্ধান আরো ক্রমবর্ধমান আরো জরুরী হচ্ছে

প্রফেসর রাজা বলেন, "ব্যাপক প্রচেষ্টার সত্ত্বেও, কোনও একটি নতুন মহাকর্ষীয় আবিষ্কার করতে সক্ষম হয়নি যা DHFR লক্ষ্য করে এবং ক্লিনিকাল ট্রায়াল করতে সক্ষম হয়"। "ইভ এর আবিষ্কার ড্রাগ ডিসকভারি একটি নতুন পদ্ধতি প্রদর্শনের চেয়ে আরো বেশি গুরুত্বপূর্ণ হতে পারে।"

গবেষণাটি জীববিজ্ঞান ও জৈবিক বিজ্ঞান গবেষণা কাউন্সিল এবং ইউরোপীয় কমিশন কর্তৃক সমর্থিত।

No comments

Powered by Blogger.